

3415A 3 Ave NW, Calgary, Alberta, T2N 0M4, Canada

Patient Name: Patient, Name

Specimen ID (SID): 25-001-0000 External SID: 123456789 Specimen Type: Plasma

DOB: 01-Jan-2000 **Doctor:** Dr. Doctor **Date/Time Collected:** 01-Jan-2025 / 00:00

PHN: AB 0000000 Report Date: 12-Mar-2025 Specimen Source: MitogenDx

Reason for Testing: Systemic arthritis/MAS

Relevant Medications: -

Cytokine, Chemokine & Growth Factor Panel

Laboratory Developed Test (LDT)

Report Summary:

Sample Comments:

-

Results Summary:

High Analytes: 6CKine, BCA-1, Eotaxin-2, Granzyme A, I-309, IFN- α 2, IFN γ , IL-1 β , IL-1RA, IL-2, IL-8, IL-12p40, IL-13, IL-15, IL-17E/IL-25, IL-17F, IL-18, IL-23, IL-27, IL-31, IL-33, IP-10, I-TAC, LIF, Lymphotactin, MCP-3, M-CSF, MIG, MIP-1 α , MIP-3 α , MIP-3 β , Perforin, SDF-1, TGF α , TNF α , TPO, TSLP, VEGF-A

Moderate High Analytes: CCL28, FGF-2, FLT-3L, GRO α , IL-4, IL-5, IL-6, IL-9, IL-10, IL-21, MCP-1, MIP-1 β , MIP-1 δ , sFas, sFasL

Results Interpretation:

The grouping profile indicates significant elevations in group A1, which may reflect innate or autoimmune inflammation, and group A2, suggesting strong pro-inflammatory cytokine activity and active T helper cell-mediated inflammation. Additionally, there is a significant elevation in group B, frequently observed in conditions associated with severe systemic inflammation or cytokine storm, along with moderate elevations in group C, which may suggest moderate cell death/apoptosis, and group D1, indicating possible evidence of moderate lymphocyte activation.

The immune activation profile shows an active type 1 response characterized by initiation/propagation factors (IL-18, IL-27, IL-2), effector cytokines (IFN γ , TNF α), cytotoxic markers (Granzyme A, Perforin), and chemokines (IP-10, MIG, I-TAC). There is also an active type 2 response with initiation/propagation factors (IL-4, IL-17E/IL-25, IL-33, TSLP) and effector cytokines (IL-5, IL-13, IL-9, IL-31), as well as a potential pathogenic type 3 response characterized by initiation/propagation factors (IL-23, IL-1 β , IL-6) and effector cytokines (IL-17F, IL-21), indicating a robust immune activation. Furthermore, an active anti-inflammatory profile is noted with moderate high levels of IL-10 and high levels of IL-1RA.

The cytokine profile suggests potential involvement of various immune cells, including B cells (BCA-1, IL-4, IL-6), T cells (IL-15, IL-19), cytotoxic T cells (IL-21, Lymphotactin, TNF α), NK cells (IL-15, IL-18, IL-2), basophils (IL-18, IL-33, IL-4, TSLP), and mast cells (IL-33, IL-4, IL-9).

Disclaimer:

The interpretation of these test results should be correlated with clinical findings and other diagnostic tests. Biomarker levels can vary due to many biological, physiological, and diurnal factors; their clinical significance must be assessed by a qualified healthcare professional. This information is not intended to be used as the sole basis for diagnosis or treatment decisions.

Reviewed by: DP

Eve Technologies Corporation is a CLIA certified High Complexity International Laboratory

3415A 3 Ave NW, Calgary, Alberta, T2N 0M4, Canada

Patient, Name

PHN: AB 0000000; DOB: 01-Jan-2000; SID: 25-001-0000; External SID: 123456789

Cytokine, Chemokine & Growth Factor Panel

Laboratory Developed Test (LDT)

Analyte	Results	(pg/ml)	Referenc	e Interval†	Analyte	Results	(pg/ml)	Reference Interval†	
6CKine	1482	HIGH	293		IL-20	67.5	-	5.7 -	
APRIL	464		52	- 1476	IL-21	19.1		0 -	22.0
BAFF	1166		285	- 1689	IL-22	69.8		0 -	148
BCA-1	445	HIGH	15	- 168	IL-23		HIGH	0 -	
CCL28	520		0		IL-24	182		24 -	
CTACK	1047		300		IL-27		HIGH	324 -	4151
EGF	13.4		0		IL-28A	19.6		0 -	
ENA-78	290		52		IL-29	21.8		0 -	
Eotaxin	36.9			- 48.8	IL-31		HIGH	0 -	
Eotaxin-2	1265	HIGH	42		IL-33		HIGH	0 -	
Eotaxin-3	18.6		8.2		IL-34	46.9		4.9 -	82.4
FGF-2	215		16		IL-35	118		0 -	362
FLT-3L	24.4		0.7		IP-10		HIGH	21 -	
Fractalkine	235		32	- 305	I-TAC		HIGH	9 -	
GCP-2	65.5		5		LIF		HIGH	0 -	
G-CSF	48.5		0		Lymphotactin		HIGH	0 -	
GM-CSF	20.1		0	- 62.6	MCP-1	273		36 -	337
Granzyme A	174	HIGH	6	- 109	MCP-2	25.2		5.9 -	35.3
Granzyme B	8.0	111011	0	- 40.3	MCP-3		HIGH	3.9 -	38.6
GROα	29.8		0.8	- 36.0	MCP-4	32.8	111011	16 -	
HMGB1	1321		0.0	- 3924	M-CSF		HIGH	4 -	
I-309	89.3	HIGH	0	- 33.2	MDC	485	ПІОП	94 -	1213
IFN-α2	191	HIGH	13		MIG		HIGH	381 -	
IFN-α2 IFNβ		пібп	0	- 120 - 99.1	MIP-1α		HIGH	12.1 -	
IFNγ	58.6 17.3	HIGH			MIP-1β		півп	9.7 -	
IFNω	40.4	пібп	0.2	- 8.3 - 55.7	MIP-1β	59.1 3817			4175
	32.7		0	- 55. <i>1</i> - 74.8	MIP-3α		HIGH	862 - 1.7 -	
IL-1α		IIIOII							
IL-1β	517	HIGH	0	- 46.2	MIP-3β		HIGH	29 -	239
IL-1RA	57.3	HIGH	1.0		MPIF-1	370		20 -	
IL-2	17.6	HIGH	0		PDGF-AA	96.1		21 -	
IL-3	1.2		0	0.0	PDGF-AB/BB	3613	HOLL	1130 -	
IL-4	3.3		0	0.0	Perforin		HIGH	1600 -	
IL-5	14.5			- 16.9	RANTES	1025		194 -	
IL-6	9.1		0.2		sCD137	16.6		2.1 -	
IL-7	2.0		0		sCD40L	510		21 -	
IL-8	33.9	HIGH	0		SCF 4	1340	111011	247 -	
IL-9	22.7			- 22.8	SDF-1		HIGH		2770
IL-10	17.7			- 19.5	sFas (ng/ml)	24.9		2.4 -	
IL-11	6.1	III.C	0		sFasL	336		28 -	
IL-12p40	419	HIGH		- 220	TARC	24.8			106
IL-12p70	15.1			- 21.5	TGFα		HIGH		18.7
IL-13	311	HIGH		- 162	TNFα		HIGH		107
IL-15	29.1	HIGH		- 22.3	TNFβ	1.5			27.6
IL-16	395			- 1033	TPO		HIGH		548
IL-17A	17.1		0		TRAIL	63.6			92.7
IL-17E/IL-25	24420	HIGH		- 1545	TSLP		HIGH		2.5
IL-17F	86.1	HIGH	0		VEGF-A	138	HIGH	0 -	91.0
IL-18	1816	HIGH	3	- 235					

[†] Reference intervals estimated by data-mining ≥2000 PLASMA samples drawn from both healthy and pathological subjects.

Patient, Name

PHN: AB 0000000; DOB: 01-Jan-2000; SID: 25-001-0000; External SID: 123456789

Cytokine Groupings - Immune Signatures

Groupings represent co-expressing cytokines identified by non-biased clustering of >130 clinical plasma-EDTA samples

Analyte	Results (pg/ml)	Referenc	e Interval†	Analyte	Results (pa/ml)	Reference	Interval†
GROUP A1 - IN				-	GROUP D1 - L				
FGF-2	215	-		- 225	BCA-1	445	HIGH	15 -	
IFN-α2	191	HIGH	13	- 128	CCL28	520		0 -	574
IL-1α	32.7		0	- 74.8	I-309	89.3	HIGH	0 -	33.2
IL-1β	517	HIGH	0	- 46.2	IL-16	395		25 -	1033
IL-1RA	57.3	HIGH	1.0	- 35.5	IL-23	5455	HIGH	0 -	3213
IL-2	17.6	HIGH	0	- 7.5	IL-35	118		0 -	362
IL-17A	17.1		0	- 24.5	Lymphotactin	227	HIGH	0 -	85.7
GROUP A2 - PI	RO-INFLAMN	MATORY/T C	ELL BIOMA	RKERS	sCD137	16.6		2.1 -	25.2
Fractalkine	235		32	- 305	sFasL	336		28 -	400
IFNγ	17.3	HIGH	0.2	- 8.3	TPO	574	HIGH	27 -	548
IL-4	3.3		0	- 3.3	GROUP D2 - M	IUCOSAL INF	LAMMATI	ON/DAMAGE	
IL-5	14.5		0.5	- 16.9	Eotaxin-3	18.6		8.2 -	76.7
IL-9	22.7		0	- 22.8	HMGB1	1321		0 -	3924
IL-12p40	419	HIGH	7	- 220	IFNβ	58.6		0 -	99.1
IL-12p70	15.1		0	- 21.5	IFNω	40.4		0 -	55.7
IL-13	311	HIGH	5	- 162	IL-11	6.1		0 -	28.3
IL-17F	86.1	HIGH	0	- 54.0	IL-17E/IL-25	24420	HIGH	35 -	1545
IL-22	69.8		0	- 148	IL-20	67.5		5.7 -	99.9
MCP-3	59.2	HIGH	3.9	- 38.6	IL-21	19.1		0 -	22.0
MIP-1α	118	HIGH	12.1	- 93.0	IL-24	182		24 -	1240
TGFα	43.4	HIGH	0.8	- 18.7	IL-28A	19.6		0 -	42.5
TNFα	112	HIGH	11	- 107	IL-29	21.8		0 -	31.8
TNFβ	1.5		0	- 27.6	IL-31	39.3	HIGH	0 -	37.5
GROUP A3 - H	EMATOPOIE	TIC GROWT	H FACTORS	3	IL-33	86.0	HIGH	0 -	42.0
GM-CSF	20.1		0	- 62.6	IL-34	46.9		4.9 -	82.4
G-CSF	48.5		0	- 81.1	LIF	21.1	HIGH	0 -	17.3
IL-3	1.2		0	- 3.5	TSLP	5.3	HIGH	0 -	2.5
IL-7	2.0		0	- 7.5	GROUP E - IMI	MUNE CELL 1	TRAFFICK	ING/ACTIVATION	ON
GROUP B - INN	NATE INFLA	MATION/C	YTOKINE ST	ORM	6CKine	1482	HIGH	293 -	1243
BAFF	1166		285	- 1689	CTACK	1047		300 -	1415
FLT-3L	24.4		0.7	- 29.0	Eotaxin	36.9		5.5 -	48.8
IL-27	5991	HIGH	324	- 4151	Eotaxin-2	1265	HIGH	42 -	
IL-6	9.1			- 10.8	MDC	485			1213
IL-8	33.9	HIGH		- 21.2	MIP-1δ	3817		862 -	4175
IP-10	1651	HIGH		- 281	MPIF-1	370		20 -	
I-TAC	356	HIGH		- 289	RANTES	1025		194 -	
IL-10	17.7			- 19.5	SCF	1340		247 -	
IL-15	29.1	HIGH		- 22.3	SDF-1	3424	HIGH	849 -	2770
IL-18	1816	HIGH	3	- 235	GROUP F - PL	ATELET ACT	IVATION/	WOUND HEALI	NG
MCP-1	273			- 337	APRIL	464			1476
MCP-2	25.2			- 35.3	EGF	13.4			78.6
M-CSF	353	HIGH	4	- 284	ENA-78	290			1084
MIG	10684	HIGH	381		GCP-2	65.5			190
MIP-1β	59.1			- 65.6	GROα	29.8		0.8 -	
MIP-3α	140	HIGH		- 31.2	MCP-4	32.8		16 -	
МІР-3β	> 1250	HIGH	29	- 239	PDGF-AA	96.1			2962
GROUP C - CE				PDGF-AB/BB	3613		1130 -		
Perforin	14703	HIGH	1600	- 10826	sCD40L	510			1040
sFas (ng/ml)	24.9		2.4		TARC	24.8			106
TRAIL	63.6		7.9	- 92.7	VEGF-A	138	HIGH	0 -	91.0

 $[\]uparrow \ \text{Reference intervals estimated by data-mining} \ \geq 2000 \ \text{PLASMA samples drawn from both healthy and pathological subjects}.$

Cytokine Groupings Descriptions

GROUP A1 - INNATE / AUTOIMMUNE INFLAMMATION

The analytes in this group are associated with innate immunity (IL- $1\alpha/\beta$, IL-17E/IL-25, IFN $\alpha2$), type 1 (IFN $\alpha2$, IL-2, MIP- 1α), and type 3 (IL-17A, IL-1) immune responses. IL-1, type I interferons, IL-17A, MIP- 1α , and FGF-2 contribute to autoimmune diseases, while IL-2 and IL-17E/IL-25 can either promote or suppress autoimmunity. IL-17A and FGF-2 synergistically drive inflammation in autoimmune arthritis. IL-17A, and FGF-2 potentiate Th17-mediated immunity, a key driver of autoimmunity, whereas IL-2A and IL-17E/IL-25A negatively regulate Th17 activity. IFN $\alpha2A$ exacerbates Th17-mediated inflammation, as seen in systemic lupus erythematosus (SLE), where IFN $\alpha2A$ and IL-17AA form a pathogenic signaling axis. IL- $1\alpha/\betaA$ also drive innate inflammatory responses and autoinflammatory conditions, and IL-17AA is expressed as a negative regulator of IL-1AA signaling.

GROUP A2 - PRO-INFLAMMATORY/T CELL BIOMARKERS

This group of analytes includes pro-inflammatory cytokines involved in initiating innate inflammation and adaptive immune responses. The cytokine profile reflects Th1 (IFNγ, IL-12p70, TNFβ; intracellular pathogens/autoimmunity), Th2 (IL-4, IL-5, IL-13, IL-9; helminths/allergy/tissue repair), Th17 (IL-17F, IL-22; extracellular pathogens/autoimmunity), Th9 (IL-9), and Th22 (IL-22, IL-13) responses, which influence allergy and autoimmunity. Mixed T cell cytokine patterns may indicate diverse inflammatory responses, T cell heterogeneity and plasticity, or hybrid cells expressing multiple cytokines (e.g., IL-4 with IFNγ, IFNγ with IL-17A). These patterns may also reflect regulatory mechanisms, such as type 2 cytokine release following tissue damage from type 1 or type 3 responses.

GROUP A3 - HEMATOPOIETIC GROWTH FACTORS

The analytes in this group are hematopoietic growth factors and could indicate the expansion and activation of lymphocytes (IL-7) and/or leukocytes (GM-CSF, G-CSF, IL-3).

GROUP B - INNATE INFLAMMATION/CYTOKINE STORM

High levels of these analytes may indicate innate immune responses. IL-6 drives acute phase protein release, IL-18 acts as a pro-inflammatory alarmin via inflammasome activation, and Flt-3L supports innate lymphoid cell development. Elevated levels can signify severe systemic inflammation, such as cytokine storm (CRS). Key cytokines involved in CRS include IL-6, IL-10, IL-18, IL-8, MIG, IP-10, MIP-1ß, and MCP-1. IL-10, despite its anti-inflammatory role, is upregulated in CRS, reflecting an insufficient regulatory response. High analyte levels are common in CRS-related conditions like macrophage activation syndrome (MAS), adult-onset Still's disease (AOSD), systemic arthritis, hemophagocytic lymphohistiocytosis (HLH), and lymphocytic leukemia.

GROUP C - CELL DEATH BIOMARKERS

The analytes in this group promote cell death through facilitating (perforin) or directly inducing apoptosis (sFas, TRAIL).

GROUP D1 - LYMPHOCYTE RECRUITMENT/ACTIVATION

Elevated levels of these analytes may reflect the recruitment and activation of NK, T, and B cells. Granzyme A and B are cytotoxic mediators from NK and CD8+ T cells. sCD137 indicates NK and T cell activity, while sFasL regulates apoptosis and is shed by NK and CD8+ T cells. Lymphotactin (CD8+ T cells), CCL28 (NK and T cells), I-309 and IL-16 (CD4+ T cells) recruit lymphocytes to inflammation sites. IL-23 has context-specific pro-inflammatory effects on NK cells, CD4+ and CD8+ T cells, while IL-35 suppresses inflammation and cytotoxic cell function.

GROUP D2 - MUCOSAL INFLAMMATION/DAMAGE

Elevated levels of these analytes may indicate tissue injury and mucosal inflammation. IL-17E/IL-25, TSLP, and IL-33 are epithelial alarmins that activate type 2 immune responses. IFN β and IFN ω (type 1 interferons) and IL-28A and IL-29 (type 3 interferons) are linked to innate antiviral responses and mucosal immunity. HMGB1, released by damaged cells, promotes interferon expression. IL-34 supports mucosal-resident macrophages, while IL-11, IL-20, and IL-21 contribute to epithelial defense and tissue repair.

GROUP E - IMMUNE CELL TRAFFICKING/ACTIVATION

The analytes in this group drive the recruitment, homing and activation of leukocytes and lymphocytes.

GROUP F - PLATELET ACTIVATION/WOUND HEALING

High levels of these analytes suggest platelet activation and wound healing, as they are released by platelets and involved in angiogenesis, tissue remodeling, and inflammation. Elevated levels are seen in conditions linked to vascular injury, angiogenesis, and thrombocytosis, such as AOSD, Kawasaki disease, juvenile arthritis, FMF, COVID-19, and Crohn's disease. Lower levels are associated with thrombocytopenia-related conditions like HLH, lymphocytic leukemia, and hematopoietic stem cell transplantation. Notably, serum samples show significantly higher analyte levels than plasma samples from the same individuals.

Descriptions of the analytes and groupings with citations are available from Eve Diagnostics.

Clusters of co-expressing cytokines were determined with unsupervised clustering analysis of >130 plasma-EDTA specimens, using a similar approach as described in our publication: Polley DJ, et al. (2023) Identification of novel clusters of co-expressing cytokines in a diagnostic cytokine multiplex test. Front. Immunol. 14:1223817. doi: 10.3389/fimmu.2023.1223817. The designations of physiological/pathological significance assigned to each grouping are speculative, based on an analysis of the immune signatures in our database of clinical specimens and on the functional/pathological roles of the analytes in each grouping established in the scientific literature.